Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Although nodal spin-triplet topological superconductivity appears probable in uranium ditelluride (UTe2), its superconductive order parameter Δkremains unestablished. In theory, a distinctive identifier would be the existence of a superconductive topological surface band, which could facilitate zero-energy Andreev tunneling to an s-wave superconductor and also distinguish a chiral from a nonchiral Δkthrough enhanced s-wave proximity. In this study, we used s-wave superconductive scan tips and detected intense zero-energy Andreev conductance at the UTe2(0-11) termination surface. Imaging revealed subgap quasiparticle scattering interference signatures witha-axis orientation. The observed zero-energy Andreev peak splitting with enhanced s-wave proximity signifies that Δkof UTe2is a nonchiral state:B1u,B2u, orB3u. However, if the quasiparticle scattering along theaaxis is internodal, then a nonchiralB3ustate is the most consistent for UTe2.more » « lessFree, publicly-accessible full text available May 29, 2026
-
The superconducting state of the heavy-fermion metal has attracted considerable interest because of evidence of spin-triplet Cooper pairing and nontrivial topology. Progress on these questions requires identifying the presence or absence of nodes in the superconducting gap function and their dimension. In this article, we report a comprehensive study of the influence of disorder on the thermal transport in the superconducting state of . Through detailed measurements of the magnetic-field dependence of the thermal conductivity in the zero-temperature limit, we obtain clear evidence of the presence of point nodes in the superconducting gap for all samples with transition temperatures ranging from 1.6 to 2.1 K obtained by different synthesis methods, including a refined self-flux method. This robustness implies the presence of symmetry-imposed nodes throughout the range studied, further confirmed via disorder-dependent calculations of the thermal transport in a model with a single pair of nodes. In addition to capturing the temperature dependence of the thermal conductivity up to , this model provides some information about the locations of the nodes, suggesting a or symmetry for the superconducting order parameter. Additionally, comparing the new, ultrahigh conductivity samples to older samples reveals a crossover between a low-field and a high-field regime at a single value of the magnetic field in all samples. In the high-field regime, the thermal conductivity at different disorder levels differs from each other by a simple offset, suggesting that some simple principle determines the physics of the mixed state, a fact which may illuminate trends observed in other clean nodal superconductors. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available April 1, 2026
-
Topological defects are singularities in an ordered phase that can have a profound effect on phase transitions and serve as a window into the order parameter. Examples of topological defects include dislocations in charge density waves and vortices in a superconductor or pair density wave, where the latter is a condensate of Cooper pairs with finite momentum. Here we demonstrate the role of topological defects in the magnetic-field-induced disappearance of a charge density wave in the heavy-fermion superconductor UTe2. We reveal pairs of topological defects of the charge density wave with positive and negative phase winding. The pairs are directly correlated with zeros in the charge density wave amplitude and increase in number with increasing magnetic field. A magnetic field generates vortices of the superconducting and pair density wave orders that can create topological defects in the charge density wave and induce the experimentally observed melting of this charge order at the upper critical field. Our work reveals the important role of magnetic-field-generated topological defects in the melting of the charge density wave order parameter in UTe2 and provides support for the existence of a pair density wave order on the surface.more » « less
-
The intense interest in triplet superconductivity partly stems from theoretical predictions of exotic excitations such as non-Abelian Majorana modes, chiral supercurrents and half-quantum vortices1–4. However, fundamentally new and unexpected states may emerge when triplet superconductivity appears in a strongly correlated system. Here we use scanning tunnelling microscopy to reveal an unusual charge-density-wave (CDW) order in the heavy-fermion triplet superconductor UTe2 (refs. 5–8). Our high-resolution maps reveal a multi-component incommensurate CDW whose intensity gets weaker with increasing field, with the CDW eventually disappearing at the superconducting critical field Hc2. To understand the phenomenology of this unusual CDW, we construct a Ginzburg–Landau theory for a uniform triplet superconductor coexisting with three triplet pair-density-wave states. This theory gives rise to daughter CDWs that would be sensitive to magnetic field owing to their origin in a pair-density-wave state and provides a possible explanation for our data. Our discovery of a CDW state that is sensitive to magnetic fields and strongly intertwined with superconductivity provides important information for understanding the order parameters of UTe2.more » « less
-
Novel electronic phenomena frequently form in heavy-fermions because of the mutual localized and itinerant nature of f -electrons. On the magnetically ordered side of the heavy-fermion phase diagram, f -moments are expected to be localized and decoupled from the Fermi surface. It remains ambiguous whether Kondo lattice can develop inside the magnetically ordered phase. Using spectroscopic imaging with scanning tunneling microscope, complemented by neutron scattering, x-ray absorption spectroscopy, and dynamical mean field theory, we probe the electronic states in antiferromagnetic USb 2 . We visualize a large gap in the antiferromagnetic phase within which Kondo hybridization develops below ~80 K. Our calculations indicate the antiferromagnetism and Kondo lattice to reside predominantly on different f -orbitals, promoting orbital selectivity as a new conception into how these phenomena coexist in heavy-fermions. Finally, at 45 K, we find a novel first order–like transition through abrupt emergence of nontrivial 5 f -electronic states that may resemble the “hidden-order” phase of URu 2 Si 2 .more » « less
An official website of the United States government
